How to Protect Your Hands from Arc Flashes
Rubber safety gloves are an essential component of your arc flash protection strategy.

Despite strict workplace safety regulations and the prevalence of rubber gloves and sleeves, workers still suffer a significant number of injuries from electric shocks and arc flashes every day. According to CapSchell Inc., a workplace safety research and consulting firm, as many as ten U.S. workers are injured by arc flash explosions every day.
These disturbing figures are backed up by estimates from OSHA, which suggest that arc flashes account for well over 75% of the electrical accidents and fatalities that involve qualified persons.
Protecting Workers
Faced with these sobering statistics, regulators, employers, and employees have begun to look at additional ways to protect workers from arc flashes and arc blasts.
Arc Flash Causes
According to the National Fire Protection Association (NFPA), arc flashes result from electrical current traveling through the air because insulation can no longer contain the applied voltage, resulting in highly ionized air. This can be caused by a number of things. It may, for example, result from faulty equipment that has deteriorated or corroded due to usage. Equipment that is underrated for the short circuit current might also be the culprit.
No matter what the source, the result is extremely high – and potentially deadly – temperatures, which can reach up to 35,000°F.
Safety Measures
One safety measure is to "de-energize" equipment before workers start using it. For a number of reasons, however, this is not always feasible. In some situations, moreover, de-energizing equipment can actually increase the risk to workers. Since this is far from a perfect solution, there has been increased attention on using appropriate PPE to reduce the risks associated with arc flashes.
Employers should regularly inspect all the equipment in their facility to identify potential arc flash hazards. An arc flash hazard analysis can help you make a more informed decision about the kind of PPE your employees will need. It will allow you to identify the amount of energy required for an arc flash to second degree burns and help you delineate the danger areas around equipment that poses arc flash risks.
Rubber Safety Gloves: An Essential Tool
Workers' hands tend to be at the highest risk during arc flash explosions. Many workers wear arc-rated work gloves that will protect them from high temperatures. However, they often don't provide any protection for the electric shocks that can result from arc flashes. Anyone working with electrically energized equipment, then, should be using rubber safety gloves.
But not all safety gloves are created equal. Different gloves provide different levels of voltage protection. To simplify the purchasing process, rubber safety gloves are classed according to the maximum voltage they can protect against. Every voltage protection class comes with a color-coded label:
- Class 00 – Beige Label: Max. use voltage 500 volts AC; proof tested to 2,500 volts AC
- Class 0 – Red Label: Max. use voltage 1,000 volts AC; proof tested to 5,000 volts AC
- Class 1 – White Label: Max. use voltage 7,500 volts AC; proof tested to 10,000 volts AC
- Class 2 – Yellow Label: Max. use voltage 17,000 volts AC; proof tested to 20,000 volts AC
- Class 3 – Green Label: Max. use voltage of 26,500 volts AC; proof tested to 30,000 volts AC
- Class 4 – Orange Label: Max. use voltage 36,000 volts AC; proof tested to 40,000 volts AC
Regular Inspections: A Key to Safety
Purchasing and regularly wearing PPE is only part of the process for keeping workers safe in the event of an arc flash. Safety gloves also require regular inspections and testing to ensure that they are still capable of appropriately protecting workers. Various regulatory agencies, such as OSHA, ASTM, and the NFPA, have established testing protocols.
Testing at accredited laboratories is recommended. But, between these tests, workers should regularly inspect their own equipment – looking for potential physical, ozone, or chemical damage.
The best way to inspect rubber gloves is to inflate the gloves to approximately 1.25 to 1.5 times their normal size. When the gloves are inflated, it is then possible to listen to see if any air is escaping. This telltale sign indicates a possible hole in the glove which would compromise its safety. After checking the gloves from the one side, turn them inside out and again inflate them again.
Workers should also be shown how to visually inspect their gloves. These visual checks can spot more obvious damage like punctures, snags, and cuts.
And Don’t Forget to Test
Inspections are essential, but so is testing. While testing can be done at the work site, many companies don't have the appropriate testing equipment. Rather than purchasing their own, they can send the rubber gloves out to accredited independent testing sites, such as those accredited by NAIL4PET.
These tests should be performed every six months for most industries. Companies in the telecommunication sector face a lower risk of arc flashes and other related events. They can, therefore, extend the testing interval to every nine months.
Storing Your Gloves
Storing your PPE should be treated as an important part of its maintenance, not as an afterthought. Proper storage ensures maximum protection while also extending the functional life of the equipment.
Store your gloves in an approved storage bag, preferably one made of canvas. The gloves should be placed with the fingers pointing up and be right side out. Folding the gloves or storing them inside out puts a strain on the rubber that may lead to cracks or punctures. The bags should be placed in a cool and dry location away from direct sunlight.
Conclusion
Arc flashes are a dangerous and deadly phenomenon. But with the right equipment and good maintenance, workers can make sure their hands are safely protected (for more on electrical safety, see Five Leading Electrical Hazards and How to Avoid Them).
Check out the rest of our content about Personal Protective Equipment here.
Related Terms
Written by Saf-T-Gard International | Internal Experts
More from AD Safety Network
Related Questions
- When should you consider using custom molded earplugs?
- At what height do falls become deadly?
- Who should be responsible for rescuing fallen workers?
- What kind of training do loading dock workers need?
- How often should I inspect a loading dock?
- How is wind chill calculated?
- What is the difference between occupational safety and process safety?
- Why should rubber insulating gloves be tested?
- What happens if I tie off at the foot level with a personal SRL?
- Why is testing with a NAIL4PET accredited lab important?
- What kind of face protection do I need when using a chainsaw?
- What is the permissible exposure limit (PEL) for silica?
- What is silica and why is it hazardous?
- Video Q&A - What is a safety policy?
- What kind of fire extinguisher is best for your work site?
- How do I choose the right respirator and mask for working with silica?
- Can I wear fall protection equipment over my rainwear or winter gear?
- When do I need a cage ladder?
- What types of gloves protect your hands from hazardous chemicals?
- How come I still got hurt while wearing flame-resistant clothing?
- How do I win over my most reluctant employees?
- What kinds of jobs should use disposable safety gloves?
- Is it true that safety shouldn't be a top priority?
- When are employers allowed to conduct drug and alcohol tests on their employees?
- How can I get employees more involved in the risk assessment plan?
- What are some of the indirect costs of workplace accidents?
- How often do fire extinguishers need to be inspected?
- What is the best way to store rubber safety gloves?
- How much voltage protection is needed for safety gloves used in electrical work?
- What is the difference between a safety valve and a release valve?
- When do workers have the right to refuse to work?
- What is the most overlooked item when designing Lockout/Tagout (LOTO) procedures?
- What are some of the misconceptions about heat stress and what should we do to address them?
- What tools should I tether when working at heights?
- What types of gas should I watch out for when working in a confined space?
- How do you create a culture of safety in your workplace?
- What is the difference between industrial safety and industrial hygiene?
- Is it important to get PPE assessments by trained professionals?
- What is a fault tree analysis?
- What kind of respirator cartridge should I use?
- What are the safety benefits of a whistleblower program?
- What type of safety record-keeping and recording should we be doing?
- What makes a hi-vis safety vest ANSI compliant?
- Why is it important to have air sampling done to determine my PELs?
- What is the life expectancy of fall protection equipment?
- What are some basic fall protection rules that each of my workers need to understand?
- How much clearance do I need to safely use a Leading Edge SRL?
- What is the difference between an acute hazard and a chronic hazard?
- What’s the difference between a bump test, a calibration check, and a full calibration?
- Is there any legislation regulating lone worker safety I should know about before hiring?
- What kind of fire extinguisher and accessories should be kept on hand on a factory floor?
- What can companies do to reduce their lost time injury frequency rates?
- Video Q&A - What's your safety network like?
- Video Q&A - What are the 3 levels of safety?
- Video Q&A - How do you treat a near miss?
- Does body weight affect falls differently?
- What ages are most affected by falls?
- Why do workers take risks?
- What Is the Difference Between OHSAS 18001 and 18002?
- What is the difference between lost time injury and medical treatment case?
- What is the difference between occupational health and safety and workplace health and safety?
- What is the difference between occupational health and occupational safety?
- What is the difference between a lost time injury and a disabling injury?